SAGA-LS による標準試料の蛍光 X 線分析 ートライアルユースでの検討-

川村秀久*

1 はじめに

佐賀県立九州シンクロトロン光研究センター (SAGA-LS)は、シンクロトロン光の産業応用を目 的に、平成18年2月に佐賀県鳥栖市に開所した九 州初のシンクロトロン光利用施設である。SAGA-LS は入射用260MeV電子線形加速器と1.4GeV電子蓄 積リングから構成されている(表1)。偏向電磁石か ら放出されるシンクロトロン光の臨界エネルギーは 1.9keVで、赤外から20数keV程度のX線まで利 用可能である。現在までに、県有ビームライン3本 (BL09、BL12及びBL15)と専用ビームライン1本 (BL13)が整備され、X線回折など各分析装置が導 入されつつある(図1に実験研究棟1階見取図、表 2にビームライン概要)。

シンクロトロン光を利用した蛍光 X 線分析は, 試 料を非破壊で分析でき, S/N の良いデータを得るこ とができる利点がある。本研究では, トライアルユー スを利用して 3 種類の標準試料の蛍光 X 線分析を行 い,得られたスペクトルから元素を定性しその定量 下限値の算出を試みた。さらに,環境分析への適用 可能性について検討を加えた。

2 実験

2.1 試料

分析対象試料として,元素組成の異なる3種類の 試料,岩石標準試料(JG-1a),海底堆積物標準試料

	項目	詳細
線形加速器	全長	30m
	電子加速エネルギー	260MeV
	主要装置	電子銃,加速管,偏向・4極電磁石及び電源,真空槽及び真空ポンプ類,各種モニター, クライストロンなど
蓄積リング	周長	75.6m
	電子加速エネルギー	1.4GeV
	蓄積電流	150mA
	蓄積寿命	5時間
	主要装置	高周波加速空洞,偏向電磁石,4極電磁石,6極電磁石,セプタム電磁石,キッカー 電磁石,真空槽及び真空ポンプ類,各種モニター,クライストロン,挿入光源など

表1 線形加速器と蓄積リングの概要

表2 ビームラインの概要

名称	領域	分析手法	利用分野					
【BL09】 材料加工・プロセス開発 ビームライン	白色光 (分光なし)	照射	三次元微細加工など					
【BL12】 軟 X 線利用材料分析 ビームライン	$40 \mathrm{eV} \sim 1500 \mathrm{eV}$	光電子分光 XAFS	半導体・有機材料・金属材料 等の電子状態分析,局所構造 解析					
【BL15】 構造科学イメージング分析 ビームライン	$2.1 { m KeV} \sim$ 23 k eV	X 線回折 XAFS 蛍光 X 線分析	半導体・磁性体薄膜等組成分 析,構造解析,高分子材料等 イメージング					

*(財)九州環境管理協会 調查分析部

図1 実験研究棟1階見取図

(JMS-1) および石炭灰標準試料(NIST-1633b)を
 選定した。それらの 2mg ~ 100mg を精秤した後、
 ポリエチレンバッグに密封した。これをアクリル製
 試料ホルダー(内寸 φ 20mm, 外寸 40 × 40mm)
 に固定し蛍光 X 線分析試料とした(図 2)。その蛍光
 X 線分析試料名と供試料量を表 3 に示す。なお、同

図2 蛍光X線分析試料

時にブランク試料も調製した。

表3 蛍光X線測定試料名と供試料量

尚光 X 線測定		供試料量	
武料名	試料名	[mg]	
JG-1a-1	岩石標準試料	2.55	
JG-1a-2	//	19.94	
JG-1a-3	//	99.85	
JMS-1-1	海底堆積物標準試料	2.47	
JMS-1-2	//	20.12	
JMS-1-3	//	102.50	
NIST-1633b-1	石炭灰標準試料	2.45	
NIST-1633b-2	//	19.46	
NIST-1633b-3	//	103.43	

2.2 蛍光 X 線分析

蛍光 X 線分析には,BL15 の 20keV のシンクロ
トロン光を利用した(図 3)。試料台に蛍光 X 線分
析試料を固定する際には、レーザーでその照射位
置を確認した。大気圧で 30 分間照射(照射面積: 5×10mm)し,発生する蛍光 X 線を SDD 検出器
(Vortex-EX, SEIKO EG&G)で検出しスペクトル

図3 BL15(上図)と実験ハッチ(下図)

を得た(図4)。なお, 蛍光X線分析試料とともに, ブランク試料と亜鉛薄板試料も分析に供した。

亜鉛薄板試料の測定で得た亜鉛のピーク(K α) のチャンネル値を 8.63keV とし,これを利用するこ とにより各スペクトルのチャンネル値をエネルギー 値へ換算した。大野ら(1991)の手順に準じてス

図4 蛍光X線分析試料とSDD 検出器

ペクトルを解読し元素を定性した。ピーク面積の算 出にはスペクトル解析用プログラム Gamma Studio (SEIKO EG&G)を用いた。

3 結果

3.1 標準試料の分析結果

ブランク試料と亜鉛薄板試料のスペクトルを図 5 と図 6 に示す。ブランク試料の 3keV 付近のピーク は空気中 Ar(K α)に起因していると考えられる。 亜鉛薄板試料の二つのピークは K αと K βに起因し ている。その K α(8.638keV)を前述のようにエネ ルギー換算に利用した。

岩石標準試料,海底堆積物標準試料および石炭灰 標準試料のスペクトルを図7~図9に示す。岩石標 準試料のスペクトル(図7)では,K(Kα:3.313keV), Ca(Kα:3.691keV),Ti(Kα:4.510keV),Mn(Kα: 5.898keV),Fe(Kα:6.403keV,Kβ:7.057keV), Rb(Kα:13.394keV),Sr(Kα:14.164keV),Y(Kα: 14.957keV)およびZr(Kα:15.774keV)と考え られるピークを確認した。これらの元素は供試料量 に依らずいずれの試料でも確認された。ピーク面積 を試料間で比較すると,供試料量とピーク面積との 間に比例関係があるわけではなく,KやCaのよう に供試料量の増加に伴いカウント数が減少する元素 も確認された。これは蛍光X線分析試料の形状が必 ずしも均一でないことや自己吸収効果に起因してい ると考えられる。L線を利用してLaやEuなど希土

図5 ブランク試料のスペクトル

図6 亜鉛薄板試料のスペクトル

(上図:JG-1a-1, 中図:JG-1a-2, 下図:JG-1a-3)

類元素の定性を試みた。しかし、それらのピークは はっきりとはせず、また強い K 線の妨害のために、 その定性は困難であった。海底堆積物標準試料のス ペクトル (図 8) では、K (K α:3.313keV)、Ca (K α:3.691keV)、Ti (K α:4.510keV)、Mn (K α:

5.898keV), Fe (K α :6.403keV, K β :7.057keV), Zn(K α :8.638keV), Rb(K α :13.394keV), Sr(K α : 14.164keV), Y (K α :14.957keV) および Zr (K α : 15.774keV) と考えられるピークを確認できた。V (K α :4.952keV), Cu(K α :8.047keV) および As (K α :10.543keV) のピークははっきりしていな い。石炭灰標準試料のスペクトル (図 9) では, K (K α :3.313keV), Ca (K α :3.691keV), Ti (K α : 4.510keV), Fe (K α :6.403keV, K β :7.057keV), Zn(K α :8.638keV), Rb(K α :13.394keV), Sr(K α : 14.164keV), Y (K α :14.957keV) および Zr (K α : 15.774keV) と考えられるピークを確認できた。V (K α :4.952keV), Cr (K α :5.414keV), Ni (K α : 7.477keV) および Cu (K α :8.047keV) のピーク ははっきりしていない。

3.2 定量下限値の試算

本分析条件下での検出下限値(MDL)をNakai ら(2001)に準じて次のように試算した。

MDL = C × 3 × √ **Ib / (Ip-Ib)** C:既知濃度 Ib:ブランクのカウント数 Ip:標準試料のカウント数

表4 定量下限値の試算

		JG-1a-1		JG-1a-2		JG-1a-3		
元素	推奨値	Ib	Ip	MDL	Ip	MDL	Ip	MDL
	[μg/g]	[counts]	[counts]	[μg/g]	[counts]	[μg/g]	[counts]	[μg/g]
K	213000	97	2218	2970	7002	911	4908	1310
Ca	15200	154	2229	273	7224	80	5265	111
Ti	1500	22	703	31	2838	7.5	2171	9.8
Mn	440	17	604	9.3	3255	1.7	2550	2.1
Fe	14000	54	17470	18	107607	2.9	86323	3.6
Rb	178	28	894	3.3	9897	0.3	14844	0.2
Sr	187	26	874	3.4	9798	0.3	15349	0.2
Y	32.1	41	259	2.8	3188	0.2	5021	0.1
Zr	118	38	614	3.8	9286	0.2	11883	0.2

岩石標準試料の測定結果から,確認された元素に ついて見積もられた検出下限値を表4に示す。本分 析条件の場合,約2~20mg程度の供試料量で元素 によっては数 ppm 程度までの濃度を検出できそうで ある。

4 まとめ

今回,トライアルユースという限定された設備と 時間(利用時間10時間)内で,シンクロトロン光に よる標準試料の蛍光 X 線分析を行い,検出される元 素の定性と定量下限値の算出を試みた。本分析条件 下では,2~20mg 程度の供試料量で主要元素を定 性できることが分かった。極微小な環境試料の主成 分分析や,非破壊分析が不可能な文化財資料の解析 (例えば,顔料の組成判別,土器や銅鏡・銅矛の産地 推定など)への利用が今後期待される。

5 謝辞

九州シンクロトロン光研究センターの大谷亮太研

究員,隅谷和嗣研究員,石地耕太朗研究員,岡島敏 浩グループ長には,測定に際しご指導をいただきま した。また,江頭正邦主査には,利用申請手続き等 についてお世話になりました。ここにあらためて深 甚な謝意を表します。

参考資料

- 佐賀県立九州シンクロトロン光研究センターホー ムページ, http://www.saga-ls.jp/
- ・伊藤榮彦"シンクロトロンとはなにか"佐賀高輝 度光利用技術研究会(1999)
- ・大野勝美,川瀬晃,中村利廣"日本分析化学会編 機器分析実技シリーズ X線分析法"共立出版 (1991)
- Nakai, I., Terada, Y., Itou, M. and Sakurai, M.
 "Use of highly energetic (116keV) synchrotron radiation for X-ray fluorescence analysis of trace rare-earth and heavy elements" Journal of Synchrotron Radiation, 8, 1078-1081(2001)